

Test Report

Applicant: Shenzhen Maxonic Automation Control Co., Ltd.Senex Branch

Product Name: Pressure Transmitters

Brand Name: SENEX

Model No.: DG series

Date of Receipt: Dec.20, 2019

Date of Test: Dec.23-24, 2019

Date of Report: Dec.25, 2019

Prepared by: Shenzhen Most Technology Service Co., Ltd.

The safety testing has been performed on the submitted samples and found in compliance with the council EMC directive 2014/30/EU.

Shenzhen Most Technology Service Co., Ltd. No.5, 2nd Langshan Road, North District, Hi-tech Industry Park, Nanshan, Shenzhen, Guangdong, China

> Phone: 86-755-86026850 Fax: 86-755-26013350 http:// www.szmost.com

TABLE OF CONTENTS

Desc	Description			
Test	Report Declaration	4		
1. (GENERAL INFORMATION	5		
1.1				
1.2				
1.3	Test Voltage(s) of EUT	5		
2.	DESCRIPTION OF TEST STANDARD	6		
3. 1	LABORATORY INFORMATION	7		
3.1	. Laboratory Name	7		
3.2	Location	7		
3.3	•			
3.4	,			
4.	SUMMARY OF TEST RESULTS	8		
5.]	BLOCK DIAGRAM OF TEST SETUP			
5.1		9		
5.2	Block Diagram of connection between EUT and simulation-EMS	9		
6. 7	TEST INSTRUMENT USED	10		
6.1	. For Conducted Disturbance at Mains Terminals Emission Test	10		
6.2	, , , , , , , , , , , , , , , , , , , ,			
6.3				
6.4	ε			
6.5				
6.6 6.7	•			
6.8	C			
6.9	¥ •			
	CONDUCTED DISTURBANCE AT MAINS TERMINALS TEST			
7.1				
7.2	· · · · · · · · · · · · · · · · · · ·			
7.3	Power Line Conducted Disturbance at Mains Terminals Limit	12		
7.4				
7.5				
8.	RADIATED DISTURBANCE TEST			
8.1				
8.2				
8.3				
8.4 8.5				
	HARMONIC CURRENT TEST			
9.1 9.2				
9.3				
9.4				
	VOLTAGE FLUCTUATIONS & FLICKER TEST			
10.				
10.	·			
10.				
10.	4. Test Results	17		
11.]	IMMUNITY PERFORMANCE CRITERIA	18		
12. 1	ELECTROSTATIC DISCHARGE IMMUNITY TEST	19		

12.1.	Configuration of Test System		Compliance Lab
12.2.	Test Standard		19
12.3.	Severity Levels and Performance Crite		
12.4.	Test Procedure		
12.5.	Test Results		
13. RF	FIELD STRENGTH SUSCEPTIB	LITY TEST	22
13.1.	Configuration of Test System		22
13.2.	Test Standard		22
13.3.	Severity Levels and Performance Crite		
13.4.	Test Procedure		
13.5.	Test Results		23
14. EL	ECTRICAL FAST TRANSIENT/B	URST IMMUNITY TEST	27
14.1.	Configuration of Test System		
14.2.	Test Standard		
14.3.	Severity Levels and Performance Criter		
14.4.	Test Procedure		
14.5.	Test Results		
15. SU	RGE TEST	••••••	30
15.1.	Configuration of Test System		
15.2.	Test Standard		
15.3.	Severity Levels and Performance Criter		
15.4.	Test Procedure		
15.5.	Test Results		
16. IN.	JECTED CURRENTS SUSCEPTIE		
16.1.	Configuration of Test System		
16.2.	Test Standard		
16.3.	Severity Levels and Performance Crite		
16.4.	Test Procedure		
16.5.	Test Results		
17. MA	AGNETIC FIELD IMMUNITY TE		
17.1.	Configuration of Test System		
17.2.	Test Standard		
17.3.	Severity Levels and Performance Crite		
17.4.	Test Procedure		
17.5.	Test Results		
18. VC	DLTAGE DIPS AND INTERRUPTI	ONS TEST	39
18.1.	Configuration of Test System		
18.2.	Test Standard		
18.3.	Severity Levels and Performance Crite		
18.4.	Test Procedure		
18.5.	Test Results		40
APPF	ENDIX I	(2 pages)	
	ENDIX II (Test Photos)	(1 page)	
	ENDIX III (Photos of the EUT)	(1 page)	
		(- P-0-)	

TEST REPORT DECLARATION

Report Number	MTEN19122137					
	Shenzhen Maxonic Automation Control Co., Ltd.Senex Branch					
Applicant	First Floor 102, I Guangzhou	No. 600 No. 2, Guangshan Second Road, Tianhe District,				
	Shenzhen Maxonic Automation Control Co., Ltd.Senex Branch					
Manufacturer	First Floor 102, No. 600 No. 2, Guangshan Second Road, Tianhe District, Guangzhou					
	Product Name	Pressure Transmitters				
Product	Model No.	DG series				
	Power Supply	9-36VDC				
Test Result	The EUT was found compliant with the requirement(s) of the standards.					
Standard	`	3 IEC 61000-4-2:2008,IEC 61000-4-3:2006+A1:2007+A2:2010, 2012, IEC 61000-4-5:2014+A1:2017, IEC 61000-4-6:2014)				

*Note

The above device has been tested by Shenzhen Most Technology Service Co., Ltd. To determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test record, data evaluation & Equipment Under Test (EUT) configurations represented are contained in this test report and Shenzhen Most Technology Service Co., Ltd. Is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced except in full, without written approval of Shenzhen Most Technology Service Co., Ltd., this document may be altered or revised by Shenzhen Most Technology Service Co., Ltd., personal only, and shall be noted in the revision of the document.

Prepared by	Lili Lu
Trepared by	Lili Lu(Engineer)
Reviewed by	APPROVED IN STATE OF THE PROPERTY OF THE PROPE
Approved by	Sunny Deng(Engineer) White Sunny Deng(Engineer)
	Yvette Zhou(Manager)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Description	:	Pressure Transmitters	
Model Number :		DG series	
Remark	:	Used DG2 does all tests	

1.2. Operational Mode(s) of EUT

Order Number	:	Test Mode(s)
1	:	Running
	:	

1.3. Test Voltage(s) of EUT

Order Number	:	Test Voltage(s)
1	•	DC 24V by DC Source
	:	

2. DESCRIPTION OF TEST STANDARD

The intention of this publication is to establish uniform requirements for the radio disturbance level of the equipment contained in the scope, to fix limits of disturbance, to describe methods of measurement and to standardize operating conditions and interpretation of results.

The following referenced standard are indispensable for the application of this report.

Referenced Description below:

EN 61326-1:2013

Electromagnetic Equipment for measurement, control and laboratory use – EMC requirements-Part 1: General requirement.

3. LABORATORY INFORMATION

3.1. Laboratory Name

Shenzhen Most Technology Service Co., Ltd.

3.2. Location

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China

3.3. Test facility

3m Anechoic Chamber : Nov. 28, 2012 File on Federal

Communication Commission Registration Number:490827

Shielding Room : Nov. 28, 2012 File on Federal

Communication Commission Registration Number:490827

EMC Lab. : Accredited by TUV Rheinland Shenzhen

Audit Report: UA 50149851

Mar. 12, 2009

Accredited by Industry Canada Registration Number: 7103A-1

Oct. 22, 2012

Accredited by TIMCO

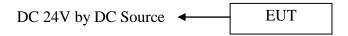
Registration Number: Q1460

March 28, 2010

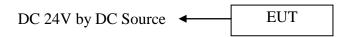
3.4. Measurement Uncertainty

No.	Item	Uncertainty
1.	Uncertainty for Conducted Disturbance Test	1.25dB
2.	Uncertainty for Radiated Disturbance Test	3.15dB

4. SUMMARY OF TEST RESULTS


	EMISSION		
Test Item	Standard	Limits	Results
Conducted disturbance at mains terminals	CISPR11:2015	Class A	N/A
Radiated disturbance	CISPR11:2015	Class A	PASS
Harmonic current emissions	EN IEC 61000-3-2:2019	Class A	N/A
Voltage fluctuations & flicker	EN 61000-3-3:2013		N/A
]	IMMUNITY (EN 61326-1:2013)		
Test Item	Basic Standard	Performance Criteria	Results
Electrostatic discharge (ESD)	IEC 61000-4-2:2008	В	PASS
Radio-frequency, Continuous radiated disturbance	IEC 61000-4-3: 2006+A1:2007+A2:2010	A	PASS
Electrical fast transient (EFT)	IEC 61000-4-4:2012	В	PASS
Surge (Input d.c. power ports)		В	PASS
Surge (Telecommunication ports)	IEC 61000-4-5:2014+A1:2017	В	N/A
Radio-frequency, Continuous conducted disturbance	IEC 61000-4-6:2014	A	PASS
Power frequency magnetic field	IEC 61000-4-8:2010	A	PASS
Voltage dips, 100% reduction		В	N/A
Voltage dips, 30% reduction	IEC 61000-4-11:2004+A1:2017	С	N/A
Voltage interruptions		С	N/A

5. BLOCK DIAGRAM OF TEST SETUP


The equipments are installed test to meet CISPR11 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. EUT was tested in normal configuration (Please See following Block diagrams)

5.1. Block Diagram of connection between EUT and simulation-EMI

(EUT: Pressure Transmitters)

5.2. Block Diagram of connection between EUT and simulation-EMS

(EUT: Pressure Transmitters)

6. TEST INSTRUMENT USED

6.1. For Conducted Disturbance at Mains Terminals Emission Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	Test Receiver	Rohde & Schwarz	ESCI	100492	Mar. 09, 19	1 Year
2.	L.I.S.N.	Rohde & Schwarz	ENV216	100093	Mar. 09, 19	1 Year
3.	Coaxial Switch	Anritsu Corp	MP59B	6200283933	Mar. 09, 19	1 Year
4.	Terminator	Hubersuhner	50Ω	No.1	Mar. 09, 19	1 Year
5.	RF Cable	SchwarzBeck	N/A	No.1	Mar. 09, 19	1 Year

6.2. For Radiation Test (In Anechoic Chamber)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	Test Receiver	Rohde & Schwarz	ESPI	101202	Mar. 09, 19	1 Year
2.	Bilog Antenna	Sunol	JB3	A121206	Mar. 09, 19	1 Year
3.	Cable	Resenberger	N/A	NO.1	Mar. 09, 19	1 Year
4.	Cable	SchwarzBeck	N/A	NO.2	Mar. 09, 19	1 Year
5.	Cable	SchwarzBeck	N/A	NO.3	Mar. 09, 19	1 Year
6.	DC Power Filter	DuoJi	$DL2 \times 30B$	N/A	N/A	N/A
7.	Single Phase Power	DuoJi	FNF 202B30	N/A	N/A	N/A
	Line Filter					
8.	3 Phase Power Line	DuoJi	FNF 402B30	N/A	N/A	N/A
	Filter					

6.3. For Harmonic / Flicker Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	AC Power Source	Kikusui	AC40MA	LM003232	Mar. 09, 19	1 Year
2.	Test Analyzer	Kikusui	KHA1000	LM003720	Mar. 09, 19	1 Year
3.	Line Impendence	Kikusui	LIN40MA-	LM002352	Mar. 09, 19	1 Year
	Network		PCR-L			

6.4. For Electrostatic Discharge Immunity Test

	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
							Interval
Ī	1.	ESD Tester	Kikusui	KES4021	LM003537	Mar. 09, 19	1 Year

6.5. For RF Strength Susceptibility Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	Signal Generator	IFR	2032	203002/100	Mar. 09, 19	1 Year
2.	Amplifier	A&R	150W1000	301584	NCR	NCR
3.	Dual Directional Coupler	A&R	DC6080	301508	Mar. 09, 19	1 Year
4.	Power Sensor	Anritsu	MA2491A	32263	Mar. 09, 19	1 Year
5.	Power Meter	R&S	NRVS	100444	Mar. 09, 19	1 Year
6.	Field Monitor	A&R	FM5004	300329	Mar. 09, 19	1 Year
7.	Field Probe	A&R	FP5000	300221	Mar. 09, 19	1 Year
8.	Log-periodic Antenna	A&R	AT1080	16512	Mar. 09, 19	1 Year
9.	RF Cable	MIYAZAKI	N/A	No.1/No.2	Mar. 09, 19	1 Year

6.6. For Electrical Fast Transient/Burst Immunity Test

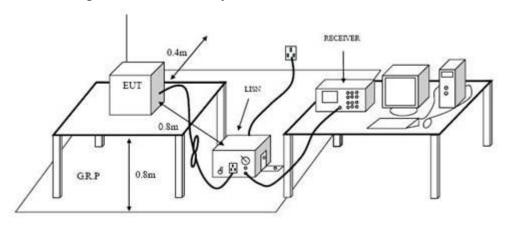
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	EMCPRO System	EM Test	UCS-500-M4	V0648102026	Mar. 09, 19	1 Year

6.7. For Surge Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	EMCPRO System	EM Test	UCS-500-M4	V0648102026	Mar. 09, 19	1 Year

6.8. For Injected Currents Susceptibility Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	Signal Generator	IFR	2032	203002/100	Mar. 09, 19	1 Year
2.	Amplifier	A&R	150W1000	301584	NCR	NCR
3.	CDN	FCC	FCC-801-M2-25	47	Mar. 09, 19	1 Year
4.	CDN	FCC	FCC-801-M3-25	107	Mar. 09, 19	1 Year
5.	EM Injection Clamp	FCC	F-203I-23mm	403	Mar. 09, 19	1 Year
6.	RF Cable	MIYAZAKI	N/A	No.1/No.2	Mar. 09, 19	1 Year


6.9. For Voltage Dips and Interruptions Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
						Interval
1.	EMCPRO System	EM Test	UCS-500-M4	V0648102026	Mar. 09, 19	1 Year

7. CONDUCTED DISTURBANCE AT MAINS TERMINALS TEST

7.1. Configuration of Test System

7.2. Test Standard

CISPR11:2015

7.3. Power Line Conducted Disturbance at Mains Terminals Limit

Frequency range MHz	Rated input power of ≤ 20 kVA		Rated input power of > 20 kVA ^a	
	Quasi-peak dB(μV)	Average dB(μV)	Quasi-peak dB(μV)	Average dB(μV)
0,15 - 0,50	79	66	100	90
0,50 – 5	73	60	86	76
			90	80
5 – 30	73	60	decreasing linearly with logarithm of frequency to	
			73	60

At the transition frequency, the more stringent limit shall apply.

NOTE 1 Limits only apply to low voltage a.c. mains input ports.

NOTE 2 For class A equipment intended to be connected solely to isolated neutral or high impedance earthed (IT) industrial power distribution networks (see IEC 60364-1), the limits defined for group 2 equipment with a rated input power > 75 kVA in Table 6 can be applied.

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

7.4. Test Procedure

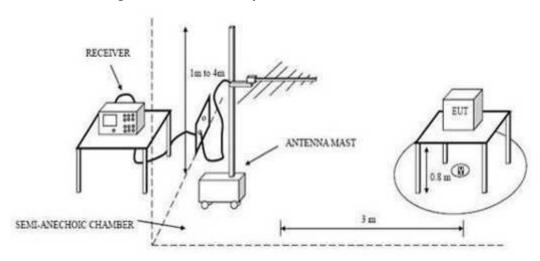
The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram

a These limits apply to equipment with a rated input power > 20 kVA and intended to be powered by a dedicated power transformer or generator, and which is not connected to Low Voltage (LV) overhead power lines. For equipment not intended to be powered by a user specific power transformer, the limits for ≤20 kVA apply. The manufacturer and/or supplier shall provide information on installation measures that can be used to reduce emissions from the installed equipment. In particular, it shall be indicated that this equipment is intended to be powered by a dedicated power transformer or generator and not by LV overhead power lines.

of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to CISPR 11 Class A on conducted Disturbance test.

The bandwidth of test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked. The test result are reported on Section 7.5.


7.5. Conducted Disturbance at Mains Terminals Test Results

- 7.5.1. Test Results: N/A
- 7.5.2. If the average limit is met when using a quasi-peak detector, the EUT shall be deemed to meet both limits and measurement with average detector is unnecessary.
- 7.5.3. Emission Level= Correct Factor + Reading Level.

8. RADIATED DISTURBANCE TEST

8.1. Configuration of Test System

8.2. Test Standard

CISPR11:2015

8.3. Radiated Disturbance Limit

All emanations from computing devices or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

	10 m measuring distance rated input power of		3 m measuring distance ^b rated input power of	
Frequency range				
MHz	≤ 20 kVA	> 20 kVA ^a	≤ 20 kVA	> 20 kVA ^a
2	Quasi-peak	Quasi-peak	Quasi-peak	Quasi-peak
	dB(μV/m)	dB(μV/m)	dB(μV/m)	dB(μV/m)
30 – 230 230 – 1 000	40 47	50 50	50 57	60 60

On a test site, class A equipment can be measured at a nominal distance of 3 m, 10 m or 30 m. A measuring distance less than 10 m is allowed only for equipment which complies with the definition given in 3.10. In case of measurements at a separation distance of 30 m, an inverse proportionality factor of 20 dB per decade shall be used to normalize the measured data to the specified distance for determining compliance.

At the transition frequency, the more stringent limit shall apply

- These limits apply to equipment with a rated input power of > 20 kVA and intended to be used at locations where there is a distance greater than 30 m between the equipment and third party sensitive radio communications. The manufacturer shall indicate in the technical documentation that this equipment is intended to be used at locations where the separation distance to third party sensitive radio services is > 30 m. If these conditions are not met, then the limits for ≤ 20 kVA apply.
- The limits specified for the 3 m separation distance apply only to small equipment meeting the size criterion defined in 3.10.

Note: 1.The lower limit shall apply at the transition frequencies.

2. Distance refers to the distance in meters between the test antenna and the closed point of any part of the EUT.

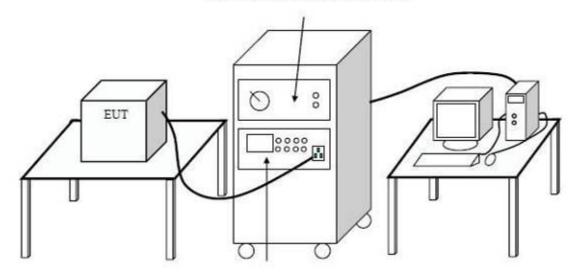
8.4. Test Procedure

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to CISPR11 Class A on Radiated Disturbance test.

The bandwidth setting on the test receiver is 120 kHz.

The frequency range from 30MHz to 1000MHz is checked. The test result are reported on Section 8.5.

8.5. Radiated Disturbance Test Results


- 8.5.1. Test Results: **PASS**
- 8.5.2. Emission Level= Correct Factor + Reading Level.
- 8.5.3. All reading are Quasi-Peak values.
- 8.5.4. The test data and the scanning waveform are attached within Appendix I.

9. HARMONIC CURRENT TEST

9.1. Configuration of Test System

9.2. Test Standard

EN 61000-3-2:2006+A1:2009+A2:2009; Class A

9.3. Test Limits

For Class A equipment, the hamonics of the input current shall not exceed the values given in below:

Harmonic order	Maximum permissible		
n	Harmonic current		
	A		
Odd ha	rmonics		
3	2.30		
5	1.14		
7	0.77		
9	0.40		
11	0.33		
13	0.21		
15≦n≦39	0.15 15/n		
Even ha	rmonics		
2	1.08		
4	0.43		
6	0.30		
8 ≤ n ≤ 40	0.23 8/n		

9.4. Test Results

No limits apply for equipment with an active input power less than or equal to 75W

10. VOLTAGE FLUCTUATIONS & FLICKER TEST

10.1.Configuration of Test System

Same as Section 9.1.

10.2.Test Standard

EN 61000-3-3:2013

10.3.Test Limits

The limits shall be applicable to voltage fluctuations and flicker at the supply terminal s of the equipment under test, the following limites apply:

the value of Pst shall not be greater than 1.0;

the value of Plt shall not be greater than 0.65;

the value of d(t) during a voltage change shall not exceed 3.3% for more than 500ms; the relative steady-state voltage change, dc, shall not exceed 3.3%;

the maximum relative voltage change dmax, shall not exceed

- a) 4% without additional conditions;
- b) 6% for equipment which is:

Switched manually, or

Swithced automatically more frequently than twice per day, and also has either a delayed restart(the delay being not less than a few thens of seconds), or manual restart, after a power supply interruption.

c) 7% for equipment which is

Attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or

switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart(the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

10.4. Test Results

10.4.1.Test Results: N/A

11.IMMUNITY PERFORMANCE CRITERIA

The test results shall be classified in terms of the loss of function or degradation of performance of the equipment under test, relative to a performance level by its manufacturer or the requestor of the test, or the agreed between the manufacturer and the purchaser of the product.

Definition related to the performance level:

Based on the used product standard

Based on the declaration of the manufacturer, requestor or purchaser

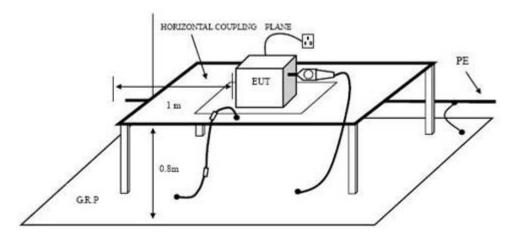
Criterion A:

During testing, normal performance within the specification limits.

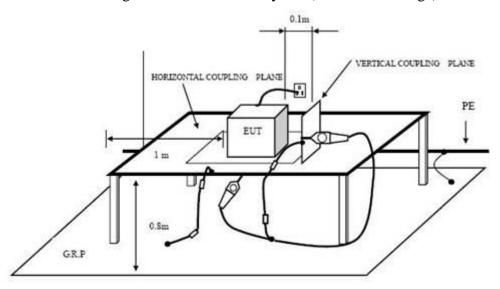
Criterion B:

During testing, temporary degradation, or loss of function or performance which is self-recovering

Criterion C:


During testing, temporary degradation, or loss of function or performance which requires operator intervention of system reset occurs.

12.ELECTROSTATIC DISCHARGE IMMUNITY TEST


12.1.Configuration of Test System

12.1.1. Configuration of ESD Test System(Direct Discharge)

DIRECT DISCHARGE SETUP

12.1.2.Configuration of ESD Test System(Indirect Discharge)

INDIRECT DISCHARGE SETUP

12.2.Test Standard

EN 61326-1:2013 (IEC 61000-4-2:2008) (Severity Level 3 for Air Discharge at 8KV, Severity Level 2 for Contact Discharge at 4KV)

12.3. Severity Levels and Performance Criterion

12.3.1.Severity level

Level	Test Voltage	Test Voltage
	Contact Discharge (KV)	Air Discharge (KV)
1.	2	2
2.	4	4
3.	6	8
4.	8	15
X	Special	Special

12.3.2.Performance criterion: **B**

12.4.Test Procedure

12.4.1.Air Discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times for each pre-selected test point. This procedure was repeated until all the air discharge completed.

12.4.2.Contact Discharge:

All the procedure was same as Section 12.4.1. except that the generator was re-triggered for a new single discharge and repeated 50 times for each pre-selected test point. The tip of the discharge electrode was touch the EUT before the discharge switch was operated.

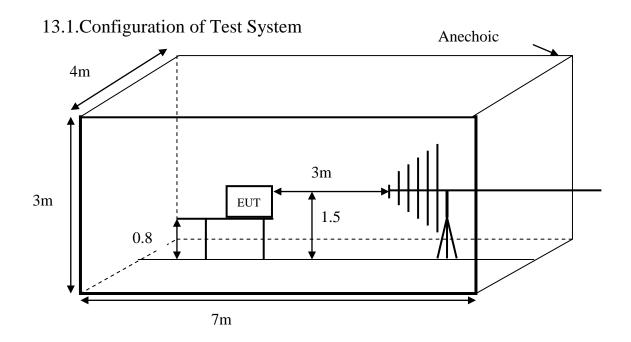
12.5.Test Results

12.5.1.Test Results: PASS

12.5.2. Test data on the following pages.

Electrostatic Discharge Test Results

Shenzhen Most Technology Service Co., Ltd.


Test Voltage :	Test Voltage : 1 Test I		Dec.24, 2019
Test Mode :	1	Criterion :	В
Temperature:	25 °C	Humidity:	59 %
Air Discharge: 2	±8KV # For Air Discha	rge each Point Positive 10	times and negative 10
	times discharg	e.	
Contact Discharg	e: ±4KV # For Contact L	Discharge each point positi	ive 10 times and
	negative 10 tin	nes discharge	
	Test Results	s Description	
	Location	Kind A-Air Discharge C-Contact Discharge	Result
Gaps		A	PASS
Metal Housing		C	PASS
НСР		C	PASS
VCP of Front		C	PASS
VCP of Rear		C	PASS
VCP of Left		C	PASS
VCP of Right		C	PASS
Remark:			

Discharge was considered on Contact and Air and Horizontal Coupling Plane (HCP) and Vertical Coupling Plane (VCP).

Reviewer	:	Sum

13.RF FIELD STRENGTH SUSCEPTIBILITY TEST

13.2.Test Standard

EN 61326-1:2013 (IEC 61000-4-3:2006+A1:2007+A2:2010)

(Severity Level: 3 at 10V / m(80-1000MHz), Severity Level: 2 at 3V / m(1.4GHz-2GHz),

Severity Level: 1 at 1V / m(2GHz-2.7GHz)

13.3. Severity Levels and Performance Criterion

13.3.1.Severity level

Level	Test Field Strength V/m			
1.	1			
2.	3			
3.	10			
X	Special			

13.3.2.Performance criterion: A

13.4.Test Procedure

Testing was performed in a Fully anechoic chamber as recommended by IEC 61000-4-3. The EUT was placed on an 80 cm high non-conductive table located in the area of field uniformity. The radiating antenna was placed 3m in front of the EUT and Support system, and dwell time of the radiated interference was controlled by an automated, computer-controlled system. The signal source was stepped through the applicable frequency range at a rate no faster than 1% of the fundamental. The signal was amplitude modulated 80% over the frequency range 80 MHz to 1GHz at a level of 10 V/m, 1.4GHz to 2.0GHz at a level of 3 V/m, 2.0GHz to 2.7GHz at a level of 1V/m. Field presence was monitored during testing via a field probe placed in close proximity to the EUT. Throughout testing, the EUT was closely monitored for signs of susceptibility. The test was performed with the antennae oriented in both a horizontal and vertical polarization.

All the scanning conditions are as follows:

	Condition of Test	Remarks
1.	Test Fielded Strength	10V/m (Severity Level 3)
		3 V/m (Severity Level 2)
		1 V/m (Severity Level 1)
2.	Radiated Signal	80% amplitude modulated with a
		1kHz sine wave
3.	Scanning Frequency	80 - 1000 MHz, 1.4-2.0GHz, 1.4GHz – 2.7GHz
4.	Sweeping time of radiated	0.0015 decade/s
5.	Dwell Time	1.5 Sec.

13.5.Test Results

13.5.1.Test Results: **PASS**

13.5.2. Test data on the following pages.

RF Field Strength Susceptibility Test Results

Shenzhen Most Technology Service Co., Ltd.

Test Voltage :	1		Test Date:	Dec.24, 2019		
Test Mode:	1		Frequency Range:	80-1000MHz,		
Field Strength:	10 V/m		Criterion :	A		
Temperature:	26 °C		Humidity:	58 %		
Modulation:	$\square AM$	□Pulse	□none 1 k.	Hz 80%		
		Test Result	s Description			
		Frequenc 80MHz -	ry Rang : 1000 MHz			
Step	S		1%	1%		
		Horiz	ontal	Vertical		
Fron	ıt	PA	SS	PASS		
Righ	nt	PASS		PASS		
Rea	r	PA	SS	PASS		
Left	t	PA	SS	PASS		
Note: No function	loss					

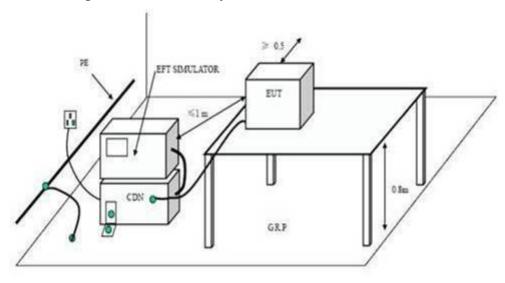
		Sunm	
Reviewer	:		

RF Field Strength Susceptibility Test Results Shenzhen Most Technology Service Co., Ltd.

Test Voltage :	1		Test Date:	Dec.24, 2019	
Test Mode:	1		Frequency Range:	1.4GHz-2GHz	
Field Strength:	3 V/m		Criterion :	A	
Temperature:	26 °C		Humidity:	58 %	
Modulation:	$\square AM$	□Pulse	\square none 1 ki	Hz 80%	
		Test Result	s Description		
			cy Rang: 0GHz		
Step	S		1%	1%	
		Horiz	zontal	Vertical	
Fron	ıt		ISS	PASS	
Righ		PASS		PASS	
Rea	r	PA	SS PASS		
Left	<i>t</i>	PA	ISS	PASS	
Note: No function	loss				

		Sunmy
Reviewer	:	

RF Field Strength Susceptibility Test Results Shenzhen Most Technology Service Co., Ltd.


Test Voltage :	1	Test Date:	Dec.24, 2019	
Test Mode:	1	Frequency Range:	2GHz-2.7GHz	
Field Strength:	1 V/m	Criterion :	A	
Temperature:	26 °C	Humidity:	58 %	
Modulation:	Ø AM □Puls	e □none 1 k	Hz 80%	
	Test Res	ults Description		
	Freque 2.0MHz	ncy Rang 1: - 2.7 MHz		
Step	S	1%	1%	
	На	rizontal	Vertical	
Fron		PASS	PASS	
Righ		PASS	PASS	
Rea		PASS	PASS	
Left	,	PASS	PASS	
Note: No function	loss			

		Sunny	
Reviewer	:		

14.ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

14.1.Configuration of Test System

14.2.Test Standard

EN 61326-1:2013 (IEC 61000-4-4:2012) (Severity Level 3 at 2KV)

14.3. Severity Levels and Performance Criterion

14.3.1.Severity level

Open Circuit Output Test Voltage ±10%							
Level	On Power Supply On I/O (Input/Output)						
	Lines	Signal data and control lines					
1.	0.5 KV	0.25 KV					
2.	1 KV	0.5 KV					
3.	2 KV	1 KV					
4.	4 KV	2 KV					
X	Special	Special					

14.3.2.Performance criterion: **B**

14.4.Test Procedure

The EUT and its simulators were placed on a the ground reference plane and were insulated from it by an wood support $0.1m \pm 0.01m$ thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane was project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5m. All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under test to minimize the coupling between the cables.

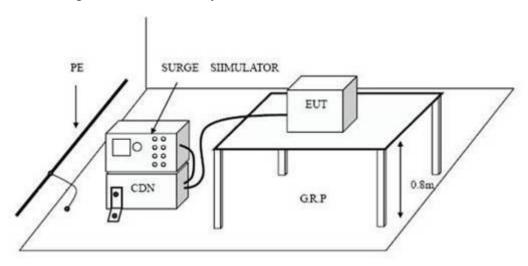
- 14.4.1. For input and AC power ports:
- 14.4.2. The EUT was connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both positive transients and negative transients of test voltage was applied during compliance test and the duration of the test can't less than 2mins.
- 14.4.3. For signal lines and control lines ports:
- 14.4.4.It's unnecessary to test.
- 14.4.5.For DC input and DC output power ports:
- 14.4.6.It's unnecessary to test.

14.5.Test Results

- 14.5.1.Test Results: **PASS**
- 14.5.2. Test data on the following pages.

Electrical Fast Transient/Burst Test Results

Shenzhen Most Technology Service Co., Ltd.


Test Voltage : 1						Test Date:		Dec.24, 2019		
Test Mode	:	1				Criterion	:	В		
Temperature:	•	25 °C	7			Humidity:		55 %		
		I		Tes	st Results D	escription				
Inject Line		oltage KV	Inject Time(s)	Inject Method	Results	Inject Line	Voltage KV	Inject Time(s)	Inject Method	Results
L1		±2	120	Direct	PASS					
L2		±2	120	Direct	PASS					
L1+L2		±2	120	Direct	PASS					
PE		±2	120	Direct	PASS					
L1+PE		±2	120	Direct	PASS					
L2+PE		±2	120	Direct	PASS					
L1 +L2+PE		±2	120	Direct	PASS					
Remark: L1 stands for positive, L2 stands for negative										

		Sunmy
Reviewer	:	

15.SURGE TEST

15.1.Configuration of Test System

15.2.Test Standard

EN 61326-1:2013 (IEC 61000-4-5:2014+A1:2017) (Severity Level: Line to Line was Level 1 at 0.5KV Line to PE was Level 2 at 1KV)

15.3. Severity Levels and Performance Criterion

15.3.1.Severity level

Severity Level	Open-Circuit Test Voltage			
	KV			
1	0.5			
2	1.0			
3	2.0			
4	4.0			
*	Special			

15.3.2.Performance criterion: **B**

15.4.Test Procedure

- 15.4.1.Set up the EUT and test generator as shown on Section 15.1.
- 15.4.2.For line to line coupling mode, provide a 0.5KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points, and for active line / neutral line to ground are same except test level is 1KV.
- 15.4.3.At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are applied during test.
- 15.4.4.Different phase angles are done individually.
- 15.4.5.Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

15.5.Test Results

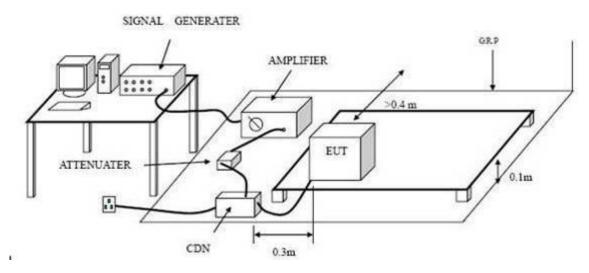
15.5.1.Test Results: PASS

15.5.2. Test data on the following pages.

Surge Immunity Test Results Shenzhen Most Technology Service Co., Ltd.

Test Voltage :	1			Test Date :	Dec.24, 2019	
Test Mode :	1 26 ℃			Criterion :	В	
Temperature:				Humidity:	55 %	
		Test	Results Descr	iption		
Location	Polarity	Phase Angle	No of Pulse	Pulse Voltage (KV)	Result	
L1-L2	<u>±</u>	0	5	0.5	PASS	
	±	90	5	0.5	PASS	
	<u>±</u>	180	5	0.5	PASS	
	±	270	5	0.5	PASS	
L1-PE	<u>±</u>	0	5	1	PASS	
	<u>±</u>	90	5	1	PASS	
	<u>±</u>	180	5	1	PASS	
	<u>±</u>	270	5	1	PASS	
L2-PE	<u>±</u>	0	5	1	PASS	
	<u>±</u>	90	5	1	PASS	
	<u>±</u>	180	5	1	PASS	
	±	270	5	1	PASS	
L1+ L2-PE	±	0	5	1	PASS	
	±	90	5	1	PASS	
	±	180	5	1	PASS	
	<u>±</u>	270	5	1	PASS	

Remark:


L1 stands for positive, L2 stands for negative

		Sunm
Reviewer	:	

16. INJECTED CURRENTS SUSCEPTIBILITY TEST

16.1.Configuration of Test System

16.2.Test Standard

EN 61326-1:2013 (IEC 61000-4-6:2013) (Severity Level 2 at 3V (r.m.s.) and frequency is from 0.15MHz to 80MHz)

16.3. Severity Levels and Performance Criterion

16.3.1.Severity level

Level	Voltage Level (e.m.f.) V
1.	1
2.	3
3.	10
X	Special

16.3.2.Performance criterion: A

16.4.Test Procedure

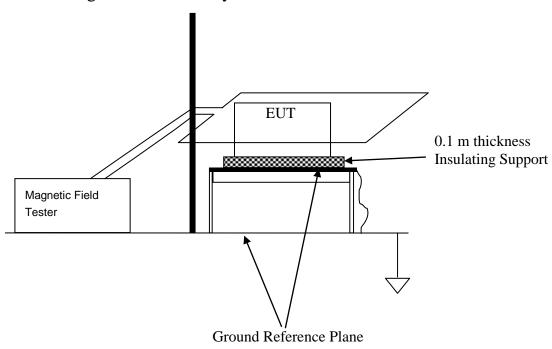
- 16.4.1.Set up the EUT, CDN and test generators as shown on Section 16.1.
- 16.4.2.Let the EUT work in test mode and test it.
- 16.4.3. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 16.4.4. The disturbance signal descriptions below is injected to EUT through CDN.
- 16.4.5.The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 16.4.6. The frequency range is swept from 0.150MHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.
- 16.4.7.The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 16.4.8.Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

16.5.Test Results

16.5.1.Test Results: PASS

16.5.2. Test data on the following pages.

Injected Currents Susceptibility Test Results Shenzhen Most Technology Service Co., Ltd.


Test Voltage :	1	Test Date	:	Dec.24,	2019
Test Mode :	1	Criterion	:	A	
Temperature:	24 °C	Humidity:		56 %	
	Test Res	sults Description		1	
Frequency Range (MHz)	Injected Position	Voltage Level (e.m.f	:)	Criterio n	Result
0.15 ~ 80	AC Mains	3V(rms), Unmodulated		A	PASS
Remark: No function los	ss				
,					
_					

		Sunmy	
Reviewer	:		

17.MAGNETIC FIELD IMMUNITY TEST

17.1.Configuration of Test System

17.2.Test Standard

EN 61326-1:2013 (IEC 61000-4-8:2009) (Severity Level 4 at 30A/m)

17.3. Severity Levels and Performance Criterion

17.3.1.Severity level

Level	Magnetic Field Strength A/m
1.	1
2.	3
3.	10
4.	30
5.	100
X.	Special

17.3.2.Performance criterion : A

17.4.Test Procedure

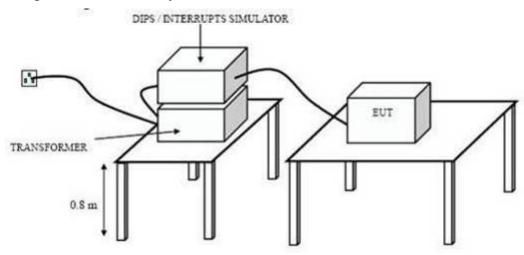
The EUT was subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m) and shown in Section 11.1. The induction coil was then rotated by 90° in order to expose the EUT to the test field with different orientations.

17.5.Test Results

17.5.1.Test Results: PASS

17.5.2.Test data on the following pages.

Magnetic Field Immunity Test Results


Most Technology Service Co., Limited

Test Voltage :	1		Test Date:	Dec.24, 2019
Test Mode :	1		Criterion:	A
Temperature:	24℃		Humidity:	56%
1		Test Results Descr	ription	
Test Level	Testing Duration	Coil Orientation	Criterio	on Result
30A/m (50Hz/60Hz)	5 mins	X	A	PASS
30A/m (50Hz/60Hz)	5 mins	Y	A	PASS
30A/m (50Hz/60Hz)	5 mins	Z	A	PASS
Remark: No function	n loss			

18. VOLTAGE DIPS AND INTERRUPTIONS TEST

18.1.Configuration of Test System

18.2.Test Standard

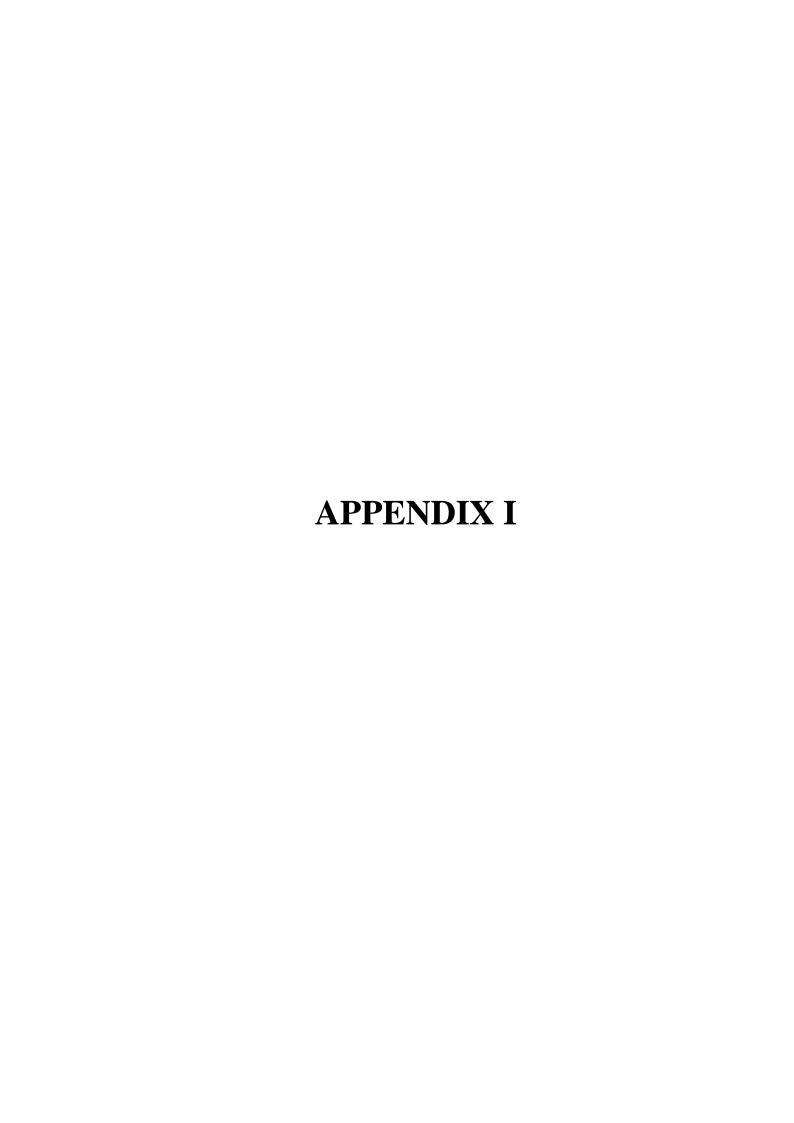
EN 61326-1:2013 (IEC 61000-4-11:2004+A1:2017)

18.3. Severity Levels and Performance Criterion

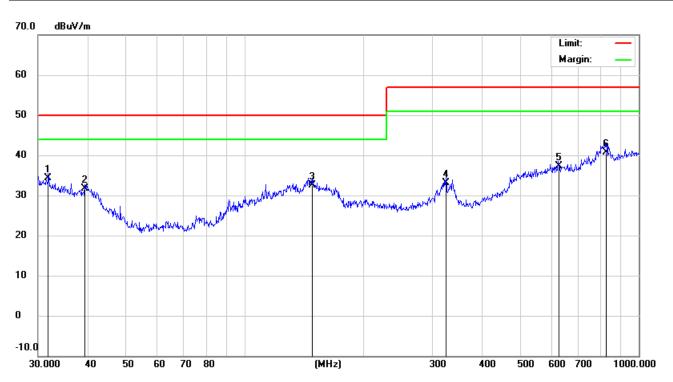
18.3.1.Severity level

Test Level	Voltage dip and	Performance	Duration
%Uт	short interruptions	Criterion	(in period)
	%Uт		
0	100	С	250 at 50 Hz
			300 at 60 Hz
0	100	В	0.5 at 50Hz
			1 at 50Hz
70	30	С	25 at 50Hz
			30 at 60Hz

18.3.2.Performance criterion: **B & C**

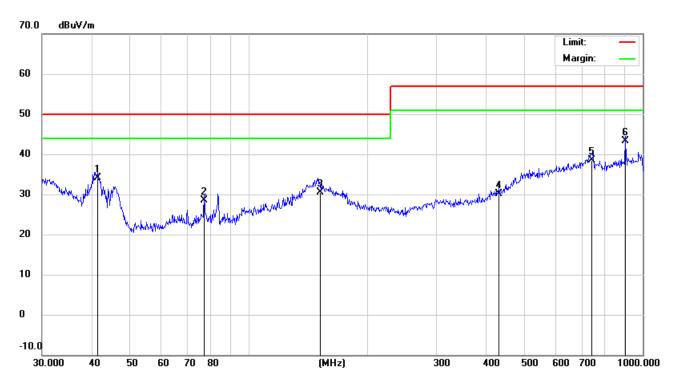


18.4.Test Procedure


- 18.4.1. The EUT and test generator were setup as shown on Section 18.1.
- 18.4.2. The interruptions is introduced at selected phase angles with specified duration.
- 18.4.3.Record any degradation of performance.

18.5.Test Results

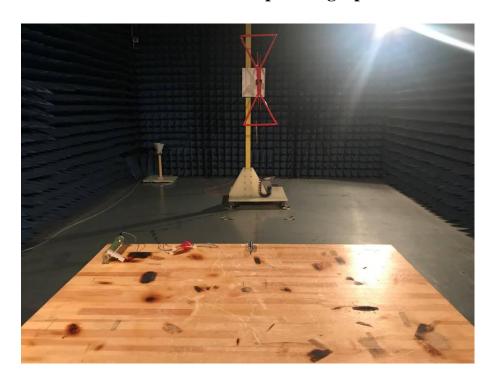
18.5.1.Test Results: **N/A**



EUT:	Pressure Transmitters	M/N:	DG2
Mode:	Running	Polarization:	Horizontal
Tested by:	Leo	Power:	DC 24V by DC Source
Temperature: / Humidity	23.0°C/64.0%	Test date:	2019-12-24

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	31.8427	14.60	19.65	34.25	50.00	-15.75	QP			
2		39.4371	17.40	14.22	31.62	50.00	-18.38	QP			
3		148.9624	15.01	17.56	32.57	50.00	-17.43	QP			
4		324.4560	17.10	15.96	33.06	57.00	-23.94	QP			
5		625.0780	13.20	24.13	37.33	57.00	-19.67	QP			
6		827.4934	12.50	28.20	40.70	57.00	-16.30	QP			

EUT:	Pressure Transmitters	M/N:	DG2
Mode:	Running	Polarization:	Vertical
Tested by:	Peter	Power:	DC 24V by DC Source
Temperature: / Humidity	25℃/51%	Test date:	2019-12-24



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		41.5670	21.40	12.77	34.17	50.00	-15.83	QP			
2		77.3210	18.60	9.89	28.49	50.00	-21.51	QP			
3		152.1297	12.80	17.61	30.41	50.00	-19.59	QP			
4		432.5456	11.00	19.12	30.12	57.00	-26.88	QP			
5		742.2587	12.30	26.28	38.58	57.00	-18.42	QP			
6	*	903.3093	14.20	29.03	43.23	57.00	-13.77	QP			

APPENDIX II

(Photos of the EUT)

Radiated Test Setup Photograph

APPENDIX III

(Photos of the EUT)

General Appearance of the EUT

General Appearance of the EUT

